

Journal of Fluorine Chemistry 113 (2002) 105-109

www.elsevier.com/locate/jfluchem

Simple access to novel β -hydroxy- β -trifluoromethyl imines

Jan Alexander Barten^a, Kazumasa Funabiki^b, Gerd-Volker Röschenthaler^{a,*}

^aInstitut für Anorganische and Physikalische Chemie, Universität Bremen, Leobener Strasse, D-28334 Bremen, Germany ^bDepartment of Chemistry, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan

Received 11 June 2001; accepted 13 August 2001

Abstract

Selected imines reacted with three different trifluoromethyl group-containing ketones in a non-catalyzed manner at ambient temperature to give the corresponding β -hydroxy- β -trifluoromethyl imines in good to excellent yields. With 1,1,1-trifluoroacetone a 1:1 and a 2:1 reaction product was obtained. The reduction of 2-isopropylimino-4-phenyl-5,5,5-trifluoropentan-4-ol led to a 5:1 diastereomeric mixture of the corresponding amine, whose dominant form was found to be (2S, 4R) 4-isopropylamino-4-phenyl-2-trifluoromethyl-butan-2-ol in the solid state. Hydrolysis in one case gave the respective β -hydroxy ketone. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Trifluoromethyl ketones; β-Hydroxy-β-trifluoromethyl imines; Hydrolysis; Reduction

1. Introduction

Recently the reaction of trifluoroacetaldehyde ethyl hemiacetal with several imines [1] and enamines [2] was reported to give the corresponding β -hydroxy- β -trifluoromethyl ketones in good yields after hydrolysis. Earlier, lithiated imines have been used and, e.g. hexafluoroacetone to obtain β-hydroxy-β-bis(trifluoromethyl) ketones or the respective aldehyde after an acidic workup [3,4]. β-Hydroxy-β-trifluoromethyl imines are precursors for β-hydroxy-β-trifluoromethyl ketones and α -trifluoromethyl- γ -amino alcohols. For the latter, to the best of our knowledge only four examples have been reported [5,6]. β -Fluoroalkyl β -amino and α trifluoromethyl-\beta-amino alcohols however, are versatile bioactive compounds [7,8]. Here, we describe a simple and general new route to synthesize β-hydroxy-β-trifluoromethyl imines in good to excellent yields from various ketimines or aldimines and activated ketones, like trifluoroacetone, trifluoroacetophenone or 2-hydroxy-trifluoroacetophenone [9] without previous lithiation at ambient temperature.

*Corresponding author. Tel.: +49-421-218-2493;

fax: +49-421-218-4267.

E-mail address: gvr@chemie.uni-bremen.de (G.-V. Röschenthaler).

2. Results and discussion

The acyclic imines **1–4** [10–12], the cyclic imines **5** [13], **6** [11] and *N*,*N'*-diisopropylidene-ethane-1,2-diamine [14–16] **7**, were prepared from the corresponding ketone and *iso*propylamine, ethylene diamine were allowed to react with an equimolar amount of the fluorinated ketones **8–10** (Scheme 1). In an enamine mediated addition (cf. [1,2]) non-moisture sensitive β -hydroxy- β -trifluoromethyl imines **11–18** were obtained in good to excellent yields as solids or analytically pure viscous liquids (Scheme 1, Table 1). (For compounds **17–21**, in the ¹H NMR (CDCl₃) spectra the HO resonances could not be observed. For **17**, ν (C=N) was found at 1666.5 cm⁻¹, δ _C (C=N) = 161.0).

Surprisingly, when aldimine 3 is reacted with trifluoroacetone in a 1:1 ratio in the NMR spectra, compound 15
along with traces of the disubstituted product 20 were
found which led us perform the reaction in a 2:5 stoichiometry. In this case, a mixture of the mono- and disubstituted product (due to a second enamine mediated addition)
was obtained, separated by recrystallization and sublimation to give a diastereomeric mixture of 20 in 28% yield. In
compound 20 probably the intramolecular OH · · · N hydrogen bridge locks the adjacent CF₃ group above or below
the resulting plane giving rise to at least two diastereomers
each with two different resonances in the ¹⁹F NMR
spectra. Upon warming the intensities of one set of signals
decreases.

Hydrolysis of compound **11** yielded the corresponding β-hydroxy ketone, 2-hydroxy-2-phenyl-1,1,1-trifluoropentan-

[☆] Presented in parts at the 15th International Symposium on Fluorine Chemistry, Vancouver, Canada, 2–7 August 1997 (J. Przyborowski, G.-V. Röschenthaler, invited lecture abstract O(3) IL-10) and at the 14th Winter Fluorine Conference, St. Petersburg Beach, FL, USA, 17–22 January 1999 (abstract 53).

Scheme 1.

Table 1 Starting compounds, products and yields

Entry	R^1	R^2	R^3	Ketone	R^4	Product	Yield (%)
1	Me	Н	Н	8	C ₆ H ₅	11	92
2	Me	Н	Н	9	o-HOC ₆ H ₄	12	56
3	C_6H_5	Н	Н	8	C_6H_5	13	96
4	C_6H_5	Н	Н	10	Me	14	98
5	Н	Н	Н	10	Me	15	76
6	Et	Н	Me	8	C_6H_5	16	63
7	$CH_2(CH_2)_2CH_2$		Н	8	C_6H_5	17	35
8	CH(Me)(CH ₂) ₂ CH ₂		Me	8	C_6H_5	18	100

4-one **21**, already synthesized by the lithiation of acetone and treatment with trifluoroacetophenone [17]. The reduction of compound **14**, having *one* chiral centre, using lithium aluminium hydride proceeds stereoselectively to furnish a 5:1 diastereomeric mixture of 4-isopropylamino-4-phenyl-2-trifluoromethyl-butan-2-ol **22A,B**.

The single crystal structure determination of the dominant diastereomer **22A** revealed four molecules in the unit cell. Very weak intermolecular hydrogen bonding N-H···O(1) 318.5 pm, and shorter intramolecular distances N(H)···H-O 266.3 pm were observed; N(1)-C(5) 145.6, C(2)-O(1) 141.9, C(5)-C(4) 153.1 and C(4)-C(2) 152.7 are single bonds [18]. The (2S, 4R) configuration in the 4-isopropylamino-4-phenyl-2-trifluoromethyl-butan-2-ol molecule was confirmed Fig. 1.

Diimine 7 reacted similarly to the other imines and added two equivalents of trifluoroacetophenone to give the white solid diol 19 (Scheme 2).

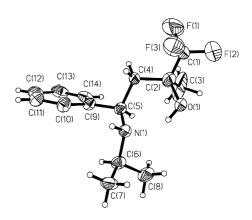


Fig. 1. Selected bond lengths (pm) and bond angles (°) for compound 22A (thermal elipsoids with 50% probability): C(1)-C(2) 145.2(16), C(2)-O(1) 141.9(9), C(2)-C(4) 152.7(10), C(2)-C(3) 169.4(18), C(5)-N(1) 145.6(8), C(5)-C(9) 152.1(8), N(1)-C(6) 149.5(9), C(9)-C(14) 139.3(9); O(1)-C(2)-C(1) 105.3(9), O(1)-C(2)-C(4) 112.6(7), O(1)-C(2)-C(4) 111.7(8), O(1)-C(2)-C(3) 107.6(8), O(2)-C(4)-C(5) 113.1(6), O(1)-C(5)-C(9) 116.5(5), O(1)-C(5)-C(4) 109.4(5), O(1)-C(9)-C(10) 119.0(6).

Scheme 2.

3. Conclusion

In a straightforward enamine mediated C–C bond formation fluorinated ketones add to some ketimines and one aldimine to furnish the respective β -imino alcohols precursors for fluorinated β -amino alcohols and β -hydroxy ketones (shown in one case each). Further studies are in progress.

4. Experimental

NMR spectra were obtained on a Bruker AC 80 instrument operating at 75.39 MHz (¹⁹F, internal standard CCl₃F) and a Bruker DPX-200 spectrometer operating at 200.13 MHz for ¹H (TMS), 188.31 MHz for ¹⁹F (CFCl₃) and 50.32 MHz ¹³C (TMS). The IR spectra of compound 17 was recorded on a Perkin-Elmer Aragon 500 FT-IR between KCl plates. MS spectra were obtained on a Varian MAT CH7A instrument at 70 eV. All reactions and manipulations were conducted under an atmosphere of dry nitrogen. The Xray structural study was carried out on a Siemens P4 diffractometer using graphite monochromated Mo Ka radiation ($\lambda = 71.073$ pm). The structure was solved by direct methods and anisotropically refined based on F² using the SHELX-97 program package [19]. The C-H hydrogen atoms were placed in calculated positions, assigned common isotropic thermal parameters and allowed to ride on their parent atoms. Crystal data for 22A, colorless crystals, C₁₄H₂₀F₃-NO, M = 275.31, tetragonal, P4₃, a = b = 1046.8(2), c =1303.1(2) pm, $\alpha = \beta = \gamma 90^{\circ}$, $V = 1.4279(4) \text{ nm}^3$, final R values $(I > 2\sigma(I))$, $R_1 = 0.0940$, $wR_2 = 0.2341$, R values (all reflections) $R_1 = 0.0973$, $wR_2 = 0.0.2405$; crystal size $1.0 \times 0.7 \times 0.6 \text{ mm}^3$ with Z = 4, reflections measured 2030, unique reflections 1591 ($R_{int} = 0.0403$). The structure was refined as a meroedric twin. A possible disorder at the CF₃ group was not resolved. CCDC deposit number CCDC 171580. See http://www.rsc.org/suppdata/.

4.1. Typical procedure

To a solution of 10 mmol imine in 10 ml diethylether 10 mmol trifluoromethylated ketone in 10 ml diethylether were added at room temperature. The reaction mixture was stirred for 1 h and all volatile substances were removed under reduced pressure. The remaining colorless solids (entries 1, 2, 5–7) were recrystallized from petroleum ether.

The remaining oils (entries 3, 4 and 8) were obtained analytically pure.

4.2. 2-Isopropylimino-4-phenyl-5,5,5-trifluoropentane-4-ol (11)

The mp is 30 °C. ¹H NMR (200.13 MHz, TMS, CDCl₃): $\delta = 0.91$ (*i*Pr, 6H, d, ³ $J_{\rm HH}$ 6.2 Hz), 1.76 (CH₃, 3H, s), 2.92 (CH₂, 2H, AB-system, $J_{\rm AB}$ 17.0 Hz), 3.46 (*i*Pr, 1H, sep, ³ $J_{\rm HH}$ 6.2 Hz), 7.33 (Ph, 5H, m), 8.57 (OH, 1H, s). ¹⁹F NMR (188.31 MHz, CFCl₃, CDCl₃): $\delta = -83.8$ (CF₃, s). MS: m/e (%) = 273 (M^+ , 36), 258 (M^+ -CH₃, 35), 204 (M^+ -CF₃, 62), 84 (*i*PrNCCH₃⁺, 100). Analysis: C₁₄H₁₈F₃NO (MG 273.30), calcd.: C 61.51, H 6.64, F 20.87; found: C 61.46, H 6.80, F 21.00.

4.3. 2-Isopropylimino-4-phenyl-5,5,5-trifluoropentan-4-ol (12)

The mp is 68 °C. ¹⁹F NMR (CDCl₃): $\delta = -63.1$, -74.5, -75.9, -82.4. MS: m/e (%) = 289 (M^+ , 28), 231 (M^+ -iPr -CH₃, 59), 220 (M^+ -CF₃, 37), 120 (C₆H₄OHCO⁺, 100).

4.4. 1-Isopropylimino-1,3-diphenyl-4,4,4-trifluorobutan-2-ol (13)

¹H-NMR (CDCl₃): δ = 0.93 (*i*Pr, 6H, d, ³ J_{HH} 6.2 Hz), 3.21 (CH₂, 2H, AB-system, J_{AB} 16.8 Hz), 3.28 (CH *i*Pr, 1H, sep, ³ J_{HH} 6.2 Hz), 7.34 (Ph, 5H, m), 8.55 (OH, 1H, s). ¹⁹F MR (CDCl₃): δ = -83.6 (CF₃, s). MS: m/e (%) = 335 (M^+ , 100), 320 (M^+ -H₃, 8), 292 (M^+ -*i*Pr, 9), 277 (M^+ -CH₃, -Pr, 11), 266 (M^+ -CF₃, 26). Analysis: C₁₉H₂₀F₃NO (MG 335.37), calcd.: C68.05, H6.01, F16.99; found: C68.15, H6.11, F16.95.

4.5. 1-Isopropylimino-1-phenyl-2-trifluoromethyl-butan-2-ol (14)

¹H NMR (CDCl₃): δ = 1.01 (CH₃ *i*Pr, 6H, d, ³*J*_{HH} 6.2 Hz), 1.44 (CH₃, 3H, s), 2.70 (CH₂, 2H, AB-system, *J*_{AB} 17.2 Hz), 3.49 (CH *i*Pr, 1H, sep, ³*J*_{HH} 6.2 Hz), 7.22 (Ph, 5H, m), 8.23 (OH, 1H, s). ¹⁹F NMR (CDCl₃): δ = -85.7 (CF₃, s). MS: *m/e* (%) = 272 (*M*⁺, 15), 258 (*M*⁺-CH₃, 14), 204 (*M*⁺-CF₃, 6), 160 (*M*⁺-CF₃, -*i*Pr, 54), 104 (PhCO⁺, 100). Analysis: C₁₄H₁₈F₃NO (MG 273.30), calcd.: C 61.53, H 6.64, F 20.85; found: C 61.35, H 6.78, F 21.30.

4.6. 4-Isopropylimino-2-trifluoromethyl-butan-2-ol (15)

The mp is 86 °C. ¹H NMR (CDCl₃): δ = 1.01 (CH₃, *i*Pr, 6H, d, ³ $J_{\rm HH}$ 6.2 Hz), 1.27 (CH₃, 3H, s), 2.54 (CH₂, 2H, m), 3.32 (CH *i*Pr, 1H, sep, ³ $J_{\rm HH}$ 6.2 Hz), 6.51 (OH, 1H, s), 7.94 (=CH, 1H, m). ¹⁹F NMR (CDCl₃): δ = -86.3 (CF₃, s). MS: mle (%) = 197 (M^+ -H, 6), 182 (M^+ -CH₃, 38), 128 (M^+ -CF₃, 13), 70 (CF₃H, 100). Analysis: C₈H₁₄F₃NO (MG 197.20), calcd.: C 48.73, H 7.12, F 28.93; found: C 48.71, H 7.05, F 28.90.

4.7. 4-Isopropylimino-3-methyl-2-phenyl-1,1,1-trifluoro-heptan-2-ol (16)

The mp is 30 °C. ¹HNMR (CDCl₃): δ = 0.71 (CH₃, 3H, d, $^3J_{\rm HH}$ 6.7 Hz), 1.10 (CH₃ Et, 3H, t, $^3J_{\rm HH}$ 7.2 Hz), 1.24 (CH₃ iPr, 6H, d, $^3J_{\rm HH}$ 6.2 Hz), 2.17 (CH₂ Et, 2H, q, $^3J_{\rm HH}$ 7.2 Hz), 3.09 (CH, 1H, q, $^3J_{\rm HH}$ 6.7 Hz), 3.82 (CH iPr, 1H, sep, $^3J_{\rm HH}$ 6.2 Hz), 7.33 (Ph, 5H, m), 8.88 (OH, 1H, s). 19 F NMR (CDCl₃): δ = -78.9 (CF₃, s). Analysis: C₁₆H₂₂F₃NO (MG 301.35), C 63.75, H 7.36, F 18.92, found: C 63.28, H 7.43, F 19.25.

4.8. 1-Isopropylimino-2-(1'-hydroxy-1'-phenyl-2',2',2'-trifluoroethyl)-cyclohexane (17)

The mp is 66 °C. ¹H NMR (CDCl₃): δ = 1.20 (CH₃ iPr, 6H, d; ${}^{3}J_{\text{HH}}$ 6.2 Hz), 1.54 (CH₂, 8H, m), 2.26 (CH, 1H, m), 3.04 (CH iPr, 1H, sep, ${}^{3}J_{\text{HH}}$ 6.2 Hz), 7.25 (Ph, 5H, m). 19 F NMR (C₆D₆): δ = -77.9 (CF₃, s). MS: m/e (%) = 313 (M⁺, 35), 270 (M⁺-iPr, 17), 244 (M⁺-CF₃, 28), 202 (M⁺-CF₃, -iPr, 13), 139 (M⁺-PhCOCF₃, 100). Analysis: C₁₇H₂₂F₃NO (MG 313.36); calcd.: C 65.15, H 7.08, F 18.19; found: C 64.95, H 7.13, F 17.91.

4.9. 2,6-Dimethyl-2-(1'-hydroxy-1'-phenyl-2',2',2'-trifluoroethyl)-1-isopropylimino-cyclohexane (18)

¹H NMR (CDCl₃): δ = 1.07 (CH₃, 12H, m), 1.88 (CH₂, CH, 7H, m), 3.82 (CH *i*Pr, 1H, sep, ³J_{HH} 6.2 Hz), 7.70 (Ph, 5H, m). ¹⁹F NMR (CDCl₃): δ = -75.7 (CF₃, s). MS: *mle* (%) = 341 (M⁺, 22), 284 (M⁺-CH₃,-*i*Pr, 52), 273 (M⁺-CF₃, 100). Analysis: C₁₉H₂₆F₃NO (MG 341.42); calcd.: C 66.84, H 7.68, F 16.69; found: C 67.35, H 7.79, F 16.30.

4.10. Ethylen-bis-[2-hydroxy-4-imino-2-phenyl-1,1,1-trifluoro-pentane] (19)

In 10 ml diethylether 15 mmol **7** were dissolved and 30 mmol trifluoroacetophenone were added. All volatile substances were removed under reduced pressure to give a white solid recrystallized from petroleum ether. Yield: 50%, mp 128 °C. The data for 1H NMR (CDCl₃): $\delta=1.7$ (CH₃, 6H, s), 2.9 (CH₂, 4H, s), 3.2 (NCH₂, 4H, s), 7.3 (Ph, 5H, m). ^{19}F NMR (CDCl₃): $\delta=-84.0$ (CF₃, s). MS: m/e (%) = 488 (M^+ , 7), 418 (M^+ –CF₃H, 8), 314 (M^+ –PhCOCF₃, 14), 244 (M^+ /2, 100), 176 (M^+ /2 –CF₃, 32). Analysis: C₂₄H₂₆F₆N₂O₂ (MG 488.47); C 59.01, H 5.36, F 23.34; found: C 58.87, H 5.40, F 23.22.

4.11. 3-Isopropylmethyliden-2,4-bis(trifluoromethyl)-pentan-2,4-diol (20)

To a solution of 50 mmol trifluoroacetone in 20 ml diethylether were added 20 mmol aldimine $\bf 3$ in 20 ml diethylether at 0 $^{\circ}$ C and stirred for 1 h. After removal of the solvent the

remaining white solid was recrystallized from *n*-hexane/ THF 2:1. Selected data for: 1 H NMR (CDCl₃): $\delta = 1.08$ (CH₃ *i*Pr, 6H, d, $^{3}J_{\text{HH}}$ 6.2 Hz), 1.54 (CH₃, 6H, s), 3.23 (CH *i*Pr, 1H, sep, $^{3}J_{\text{HH}}$ 6.2 Hz), 4.77 (CH, 1H, s), 7.80 (=CH, 1H, s). 19 F NMR (CDCl₃): $\delta = -79.5$, -86.3, -89.2, -89.7 (CF₃, s). MS: m/e (%) = 309 (M^{+} , 11), 294 (M^{+} -CH₃, 100), 240 (M^{+} -CF₃, 37), 196 (M^{+} -HOC(CF₃)₂, 14), 44 (C₃H₇⁺, 85). Analysis: HRMS (for C₁₁H₁₇F₆NO): calcd.: 309.11636; found: 309.11710.

4.12. 2-Hydroxy-2-phenyl-1,1,1-trifluoro-pentan-2-on (21)

To a solution of 5 mmol **11** in 10 ml ethanol 5 ml HCl (20%) was added and refluxed for 1 h. Diethylether (3x 20 ml) was added, the organic layer separated and dried over MgSO₄, filtered and the solvent removed under reduced pressure. A white solid remained. Yield 56%, mp 51 °C. Selected data for: ¹H NMR (CDCl₃): δ = 2.08 (CH₃, 3H, s), 3.24 (CH₂, 2H, s), 7.32 (Ph, 5H, m). ¹⁹F NMR (CDCl₃): δ = -84.4 (CF₃, s). MS: m/e (%) = 232 (M^+ , 21), 175 (M^+ -CH₃COCH₂, 11), 163 (M^+ -CF₃, 46), 105 (C₆H₅CO⁺, 100).

4.13. 4-Isopropylamino-4-phenyl-2-trifluoromethyl-butan-2-ol (22A,B)

Compound 11 (8 mmol) in 20 ml diethylether was added dropwise at 0 °C to a suspension of 18 mmol LiAlH₄ in 30 ml diethylether. Afterwards, water is added to the mixture and the residue is filtered and washed with diethylether. The organic layer was separated, dried over MgSO₄, and the solvent was removed under reduced pressure to leave a white solid recrystallized from n-hexane. The data for two diastereomers A:B = 5:1): ¹H NMR (CDCl₃): $\delta = 0.95$ (B), 1.12(**A**) (*i*Pr, 6H, d, ${}^{3}J_{HH}$ 6.2 Hz), 1.27 (**B**), 1.50(**A**) (CH₃, 3H, s), 1.92(**B**), 2.14(**A**) (CH₂, 2H, ABX-system), 2.65(**B**), $2.71(\mathbf{A})$ (*i*Pr, 1H, sep, ${}^{3}J_{HH}$ 6.2 Hz), $4.24(\mathbf{B})$, $4.26(\mathbf{A})$ (PhCH, 1H, m), 7.20(**B**), 7.25(**A**) (Ph, 5H, m). ¹⁹F NMR (CDCl₃): $\delta = -83.1(\mathbf{B}), -88.8(\mathbf{A}) \text{ (CF}_3, s), MS: m/e (\%) = 276$ $(M^+ + H, 18)$, 260 $(M^+ - CH_3, 22)$, 217 $(M^+ - CH_3, -iPr, 12)$, 148 $(M^+ - HOCCH_3CF_3CH_2, 100)$. Analysis: $C_{14}H_{20}$ -F₃NO (MG 2 75.31); calcd.: C 61.07, H 7.32, F 20.70; found: C 61.01, H 7.13, F 20.60.

Acknowledgements

Dr. K.-H. Hellberg, Solvay Fluor und Derivate GmbH, Hannover (Germany) is thanked for the generous gift of trifluoroacetone. We thank GIF (German Israel: Foundation) for financial support (Grant 1-618-20.5/1999).

References

- [1] K. Funabiki, K. Matsanaga, M. Matsui, K. Shibata, Synlett (1999) 1477.
- [2] K. Funabiki, M. Nojiri, M. Matsui, K. Shibata, J. Chem. Soc., Chem. Commun. 1998, 2051.

- [3] M. Schlosser, H. Keller, Liebigs Ann. (1995) 1583.
- [4] H. Abele, A. Haas, M. Lieb, Chem. Ber. 119 (1986) 3502.
- [5] P.B. Farmer, P.J. Cox, Med. Chem. 18 (1975) 1106 (4-amino-1,1,1-trifluoro-butan-2-ol).
- [6] P. Bravo, L. Bruche, G. Fronza, G. Zecchi, Tetrahedron, 48 (1992) 9775 [(2R*, 3R*, 4R*)-2-amino-4-hydroxy-3-hydroxymethyl-5,5,5-trifluoropentan-1-ol, (2R*, 3S*)-2-amino-4-hydroxy-3-hydroxymethyl-5,5,5-trifluoro-4-trifluoro-methylpentan-1-ol].
- [7] G.K. Surya Prakash, M. Mandal, S. Schweizer, N.A. Petasis, G. Olah, Org. Lett. 2 (2000) 3173.
- [8] P. Bravo, M. Crucianelli, T.M. Ono, M. Zanda, J. Fluor. Chem. 97 (1999) 27.
- [9] S. Matsumuto, H. Kobayashi, K. Ueno, Bull. Chem. Soc. Jpn. 42 (1969) 960.
- [10] E.A. Mistryukov, I.K. Korshevetz, Synthesis (1984) 947.

- [11] H. Weingarten, J.P. Chupp, W.A. White, J. Org. Chem. 32 (1967) 3246.
- [12] H.R. Snyder, D.S. Matheson, J. Am. Chem. Soc. 79 (1957) 2219.
- [13] D.G. Norton, V.E. Haury, F.C. Davies, L.J. Mitchell, S.A. Ballard, J. Org. Chem. 19 (1954) 1054.
- [14] A.G. Bayer, German Patent DE 2714770 Chem. Abstr. 90 (1978) 5895.
- [15] K. Findeisen, H. Heitzer, K. Dehnicke, Synthesis (1981) 702.
- [16] Y. Nakano, E. Yamazaki, H. Hanahata, K. Okajima, Y. Kitahama, Bull. Chem. Soc. Jpn. 70 (1997) 1185.
- [17] V.Y. Sosnovskikh, I.S. Ovsyannikov, I.A. Aleksandrova, J. Org. Chem. USSR 8 (1992) 420.
- [18] A.J.C. Wilson, International Tables for Crystallography, Vol. C, Kluwer Academic Publishers, Dordrecht, 1995, p. 685.
- [19] G.M. Sheldrick, SHELX-97, University of Göttingen, 1997.